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Taxonomy of Generative Models
What we’ve learned:
• PPCA
• VAE

What we’ve learned:
• MMs, HMMs, LDSs

What we study now:
• Recurrent Neural 

Networks



• Many kinds of models
• Markov Chains
• Hidden Markov Models
• Markov Random Fields
• Linear Dynamical Systems
• Recurrent Neural Networks
• Transformers

• This lecture: we focus on Recurrent Neural Networks
• Vanilla RNNs
• Basic applications for Language Modeling
• Training and Issues with RNNs
• LSTMs and GRUs

Autoregressive Models



Applications of RNNs

Finance: Stock Forecasting

NLP: Machine Translation
Healthcare: Gesture Forecasting

• NLP: Machine Translation, Text Classification, POS Tagging
• Healthcare: Gesture Forecasting, EGG 
• Computer Vision: Self-driving, Image/Texture Classification
• Finance: Stock Price Forecasting
• Many, many more



• Recurrent Neural Networks is a neural network architecture for sequential data
• Often seen as a generalization of a feed-forward neural network (MLP)

• Let’s denote
• 𝑥!, … , 𝑥" ∈ ℝ# as the inputs
• 𝑦!, … , 𝑦" ∈ ℝ$ as the outputs
• 𝑧!, … , 𝑧" ∈ ℝ% as the hidden states

• RNN can be described by

• Where
• 𝐴 ∈ ℝ%×%,𝑊 ∈ ℝ%×#, 𝐶 ∈ ℝ$×% are weight matrices
• 𝑓 and 𝑔 are nonlinear functions (e.g. 𝑓 can be a softmax function for soft classification)
• No noise 𝑤'	, 𝑣'	when RNN used for prediction instead of generation.

Recurrent Neural Network (RNNs)

𝑧'() = 𝑔 𝐴𝑧' +𝑊𝑥'  +𝑤'
𝑦' = 𝑓(𝐶𝑧') +𝑣'

𝑧'

𝑦'

𝑥'

𝑔, 𝐴

𝑊

𝑓, 𝐶



• Linear Dynamic Systems

RNNs vs LDSs
• Recurrent Neural Networks

𝑧' = 𝐴𝑧'*) + 𝐵𝑥' +𝑤', 𝑤' ∼ 𝑁(0, 𝑄)
𝑦' = 𝐶𝑧' + 𝐷𝑥' + 𝑣',         𝑣' ∼ 𝑁(0, 𝑅)

𝑧'() = 𝑔 𝐴𝑧' +𝑊𝑥'  +𝑤', 𝑤' ∼ 𝑁(0, 𝑄)
𝑦' = 𝑓(𝐶𝑧') +𝑣' ,         𝑣' ∼ 𝑁(0, 𝑅)

• Everything is linear
• Can be deterministic or stochastic
• Distributions of 𝑧!  and 𝑦!  has closed-

form due the Gaussian assumption
• Exact inference via Kalman filter
• Parameter learning via EM algorithm

• Has nonlinearity from 𝑓 and 𝑔
• Can be deterministic or stochastic
• Distributions of 𝑧!  and 𝑦!  does not 

necessarily admit a closed form
• Approximate inference via extended 

Kalman filter, particle filter, etc.
• Parameter learning via 

Backpropagation Through Time



• Let us consider an RNN with no inputs and
with noise added to the state and output.
• Can we use EM and the Kalman filter for learning and inference with RNNs?
• On the one hand, we can write a probabilistic 

model with Gaussian conditionals
• On the other hand, even if 𝑧" is Gaussian, 𝑧# = 𝑔 𝐴𝑧" +𝑤!  may not!
• Reason: a linear transformation of a Gaussian is Gaussian, but the non-linearity breaks that.

• Why is this a problem? 
• A Gaussian is uniquely determined by its mean 

and covariance (𝜇, Σ)
• The Kalman filter tracks the evolution of the 

mean and covariance of 𝑧'() ∣ 𝑦!:'. If this is not
Gaussian, then we cannot track that anymore.

Extended Kalman Filters for RNNs
𝑧!$# = 𝑔 𝐴𝑧! +𝑤!
𝑦! = 𝑓(𝐶𝑧!) + 𝑣!

𝑝(𝑧'() ∣ 𝑧') = 𝒩(𝑔 𝐴𝑧'), 𝑄
     𝑝(𝑦' ∣ 𝑧') = 𝒩(𝑓 𝐶𝑧'), 𝑅

𝐾' = AΣ'|'*)𝐶- 𝐶AΣ'|'*)𝐶- + 𝑅
*)

 𝑧̂'()|' = 𝐴𝑧̂'|'*) + 𝐴𝐾'(𝑦! − 𝐶𝑧̂'|'*))
 AΣ'()|' = 𝐴 AΣ'|'*) − 𝐾'𝐶AΣ'|'*) 𝐴- + 𝑄



• How do we apply the Kalman filter to RNNs?
• We linearize 𝑓 and 𝑔 around current estimate 

of mean and covariance using first-order 
Taylor expansion and then we can run 
a Kalman filtering step using the 
Jacobian of 𝑓 and 𝑔.

• Prediction                                                 Update

• Therefore, we don’t have any 
optimality guarantees. 

Extended Kalman Filters for RNNs 𝑧'() = 𝑔 𝐴𝑧' +𝑤'
𝑦' = 𝑓(𝐶𝑧') + 𝑣'

𝐾' = AΣ'|'*) D𝐶'
- D𝐶' AΣ'|'*) D𝐶'

- + 𝑅
*)

𝑧̂'|' = 𝑧̂'|'*) + 𝐾'(𝑦! − 𝑓(𝐶𝑧̂'|'*)))
AΣ'|' = AΣ'|'*) − 𝐾' D𝐶' AΣ'|'*)

𝑧̂'()|' = 𝐴𝑧̂'|'	
AΣ'()|' = 𝐴AΣ'|'𝐴- + 𝑄

𝑧̂'()|' = 𝑔(𝐴𝑧̂'|')	
AΣ'()|' = D𝐴' AΣ'|' D𝐴'

- + 𝑄

𝑧̃'() = D𝐴'𝑧̃' +𝑤'
𝑦' = D𝐶'𝑧̃' + 𝑣'

D𝐴' = ∇.𝑔 𝐴𝑧̂'|' 𝐴-
D𝐶' = ∇.𝑓 𝐶𝑧̂'|' 𝐶-

𝐾' = AΣ'|'*)𝐶- 𝐶AΣ'|'*)𝐶- + 𝑅
*)

𝑧̂'|' = 𝑧̂'|'*) + 𝐾'(𝑦! − 𝐶𝑧̂'|'*))
AΣ'|' = AΣ'|'*) − 𝐾'𝐶AΣ'|'*)



Unrolling and Parameter Tying
• Rather than treating it as a neural network with recurrent inputs and outputs, 

one can unroll the network such that it becomes one feed-forward pass
• Here 𝐴, 𝐶,𝑊 are the same matrices for all timestep, known as Parameter Tying

𝑧! = 0 𝑧)

𝑦)

𝑥!

𝑧/

𝑦/

𝑥)

𝑧"

𝑦"

𝑥"*)

𝐶 𝐶 𝐶

𝑊𝑊𝑊

𝐴 𝐴

𝑧!"# = 𝑔 𝐴𝑧! +𝑊𝑥!
𝑦! = 𝑓(𝐶𝑧!)

Apply matrix multiplication & function              



Backpropagation Through Time (BTT)
• The unrolled graph is a well-formed (DAG) computation graph, so we can run 

backpropagation
• Parameters are tied across time, derivatives are aggregated across all time steps
• This is known as Backpropagation Through Time

• Question: Why do we want to tie the parameters?
• Reduce the number of parameters to be learned 
• Deal with arbitrarily long sequences

• What if we always have short sequences? 
• We may untie the parameters, but then we would simply have a Feedforward Neural 

Network instead



• For a given sample (𝒙, 𝒚), with 𝒙 = 𝑥! !1#
2  and 𝒚 = 𝑦! !1#

2 ,
• For prediction at each time step 2𝑦!, we can compute the loss 𝑙!( 2𝑦! , 𝑦!) for each 

timestep and sum over all timesteps

𝐿 2𝑦, 𝑦 = 	6
!1#

2
𝑙! 	( 2𝑦! , 𝑦!)

• For single prediction, we can compute loss at the final step 𝐿 2𝑦, 𝑦2

Backpropagation in Time

𝑧! = 0 𝑧"

6𝑦"

𝑥!

𝑧#

6𝑦#

𝑥"

𝑧$

6𝑦$

𝑥$%"

𝐶 𝐶 𝐶

𝑊𝑊𝑊

𝐴 𝐴

𝑦" 𝑦# 𝑦$

𝑙" 6𝑦", 𝑦"  𝑙# 6𝑦#, 𝑦#  𝑙$ 6𝑦$ , 𝑦$  

𝑧!"# = 𝑔 𝐴𝑧! +𝑊𝑥!
𝑦! = 𝑓(𝐶𝑧!)

Apply matrix multiplication & function              



• Let’s consider applying RNN for language modeling task, When given some 
preceding context, we want the language model to predict the next word:

𝑃 𝑦! = week 	𝑦#:!4# = Homework	2	is	due	next)

• Suppose we have a set of 𝑁 sentences 𝑥(5) 51#	
7

, where 𝑥(5) = 𝑥#, … , 𝑥2!  is a 
sentence of length 𝑇5
• If 𝑉 is the set of all possible words, then we can represent each word using a one-

hot vector with size 𝑉 	×	1
• Then using a word embedding matrix 𝐸, we can retrieve the word embedding 

associated to the current word
• This provides a way for us to go from a word to its mathematical representation

Application of RNNs: Next Word Prediction

ContextNext word



Application of RNNs: Next Word Prediction
• We want each time step of the RNN to select the next word 𝑦!$# from our 

vocabulary, which is a discrete choice. In this case, we can use the softmax 
function for modeling the distribution 𝑃(𝑦!|𝑧!)
• Using BTT, we apply cross-entropy loss on the prediction of each timestep

𝑒' = 𝐸𝑥'
𝑧' = 𝑔 𝐴𝑧'*) +𝑊𝑒'
𝑦' = softmax(𝐶𝑧')



Application of RNNs: Text Summarization
• Another application of RNNs is to summarize the whole sequence into a single 

category.
• For example, given the title of a news article, predict the news category
• The entire model can be summarized by:

𝑧! = 0 𝑧)

𝑥!

𝑧/

𝑥)

𝑧"

P𝑦

𝑥"*)

Fully
Connected (FC)

softmax𝑧! = 𝑔 𝐴𝑧!4# +𝑊𝑥!4#
2𝑦 = softmax(𝐹𝐶 𝑧2 )

“New” “Ice” … ”!”

Category:
Food

Title: “New Ice 
Cream truck 
showed up in 
Walnut Building!”



• While RNNs can capture long-term dependencies,  training can be challenging
• Consider a simple RNN model with 

output at the last iteration:

• What happens to gradient 89
8:"
	as you go back in time?

Issues with RNN: Exploding/Vanishing Gradients

𝑧! = 𝑔 𝐴𝑧!4# +𝑊𝑥!4#
𝑦 = 𝐶𝑧2

𝑧! = 0 𝑧)

𝑥!

𝑧/

𝑥)

𝑧"

P𝑦

𝑥"*)

𝑦𝐿

𝜕𝐿
𝜕𝑧!

=
𝜕𝑧)
𝜕𝑧!

⋅
𝜕𝑧/
𝜕𝑧)

⋅
𝜕𝑧B
𝜕𝑧/

⋯
𝜕P𝑦
𝜕𝑧"

⋅
𝜕𝐿
𝜕 P𝑦

= 𝐴-𝐴-𝐴-⋯𝐶-
𝜕𝐿
𝜕 P𝑦

= 𝐶𝐴" - 𝜕𝐿
𝜕 P𝑦

Apply matrix multiplication & function              Assuming  𝑔 = identity



𝜕𝐿
𝜕𝑧"

=
𝜕𝑧#
𝜕𝑧"

⋅
𝜕𝑧;
𝜕𝑧#

⋅
𝜕𝑧<
𝜕𝑧;

⋯
𝜕2𝑦
𝜕𝑧2

⋅
𝜕𝐿
𝜕 2𝑦

= 𝐴=𝐴=𝐴=⋯𝐶=
𝜕𝐿
𝜕 2𝑦

= 𝐶𝐴2 = 𝜕𝐿
𝜕 2𝑦

• Let 𝜆#(𝐴) be the maximum eigenvalue of 𝐴. 
• For any initial condition 𝑧"	and a large 𝑇 → ∞

• Exploding: If |𝜆) 𝐴 | > 1, 𝐴" will grow to infinity
• Vanishing: If |𝜆) 𝐴 | < 1, 𝐴" will diminish to zero

• Hence, the gradient involving 𝐴2  terms will also either explode or vanish. 

Exploding/Vanishing Gradients: LDS case



• We have to backpropagate through many gradient terms to get back to the first 
time step
• This means long-range dependencies are difficult to learn (although in theory 

they are learnable) 

• Solutions:
• Better optimizers (second order methods, approximate second order methods)
• Normalization (at each layer to keep gradient norms stable)
• Clever initializations such that gradients don’t go to zero (e.g. start with random 

orthonormal matrices)

• Alternative parameterization: LSTMs and GRUs

Issues with RNN: Vanishing Gradients



• So how does LSTM work? And how does it address the issue of vanishing 
gradients?
• Intuition: Vanishing gradients happen because we multiply many gradients across 

time, we want some ways to prevent that

• Long Short Term Memory (LSTM) can be described as a sequence of memory 
cells, which we will go step by step

Long Short Term Memory (LSTM)

𝑐! = 𝑓! 	⨀	𝑐!4# + 𝑖! 	⨀	𝑓([𝑥!; 𝑧!4#])
𝑧! = 𝑜! 	⨀ 𝑔(𝑐!)
𝑓! = 𝜎 𝑓>?@ABC 𝑥!; 𝑧!4#   “forget gate”
𝑖! = 𝜎(𝑓DEFGC([𝑥!; 𝑧!4#]))  “input gate”
𝑜! = 𝜎(𝑓?GCFGC([𝑥!; 𝑧!4#]))  “output gate”



Long Short Term Memory: Memory Cells

𝑐! = 0

𝑧)

𝑥!

𝑧/

𝑥)

𝑧"

𝑥"*)

𝑐) 𝑐/ 𝑐"

𝑐! =	 𝑐!4# + 𝑓(𝑥!) where 𝑓 𝑣 = tanh(𝑊𝑣 + 𝑏)
ℎ! = 𝑔 𝑐!

• Information learned by the LSTM are stored in “cells”, represented by 𝑐!
• New information comes from the 𝑓(𝑥!)

• Note from the formulation, 8H#
8H#$"

= 𝐼



• Now if we concatenate what’s been learned in the hidden states ℎ!  with new 
information from 𝑓(highlighted arrow in red)

• Instead of gradient being identity,  8H#
8H#$"

= 𝐼 + 𝜀, with 𝜀 being small

Long Short Term Memory: Memory Cells

𝑐! =	 𝑐!4# + 𝑓([𝑥!; ℎ!4#]) 
ℎ! = 𝑔 𝑐!

𝑐! = 0

𝑧)

𝑥!

𝑧/

𝑥)

𝑧"

𝑥"*)

𝑐) 𝑐/ 𝑐"



• Now we need some way to control what to input and what to forget

Long Short Term Memory: Forget and Input gate

𝑐! = 𝑓! 	⨀	𝑐!4# + 𝑖! 	⨀	𝑓([𝑥!; 𝑧!4#])
𝑧! = 𝑔 𝑐!
𝑓! = 𝜎 𝑓>?@ABC 𝑥!; 𝑧!4#   “forget gate”
𝑖! = 𝜎(𝑓DEFGC([𝑥!; 𝑧!4#]))  “input gate”

𝑐! = 0

𝑧)

𝑥!

𝑧/

𝑥)

𝑧"

𝑥"*)

𝑐) 𝑐/ 𝑐"



• Finally, we need some way to decide what to store in our hidden state

Long Short Term Memory: Output gate

𝑐! = 0

ℎ)

𝑥!

ℎ/

𝑥)

ℎ"

𝑥"*)

𝑐) 𝑐/ 𝑐"

𝑐! = 𝑓! 	⨀	𝑐!4# + 𝑖! 	⨀	𝑓([𝑥!; 𝑧!4#])	 “updating the cell”
𝑧! = 𝑜! 	⨀ 𝑔(𝑐!)
𝑓! = 𝜎 𝑓>?@ABC 𝑥!; 𝑧!4#   “forget gate”
𝑖! = 𝜎(𝑓DEFGC([𝑥!; 𝑧!4#]))  “input gate”
𝑜! = 𝜎(𝑓?GCFGC([𝑥!; 𝑧!4#]))  “output gate”



• Another famous variant of the vanilla RNNs is Gated Recurrent Neural Network
• Instead of a memory cell, it uses what’s known as a Gated Recurrent United (GRU)

• On a high level, rather than using forget, input and output gates like LSTM
• GRU uses a weighted sum of two hidden states

𝑧! = 1 − 𝑠! 	⨀ 𝑧!4# + 𝑠! 	⨀ 𝑓([𝑥! 	; 𝑟! 	⨀ 𝑧!4#])

• Empirically, GRUs perform just 
   as well as LSTMs, but much more
   efficient because of it has 
   fewer gates

Other Variants: Gated Recurrent Neural Networks

Chung et al. (2014) Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling: https://arxiv.org/pdf/1412.3555v1.pdf



• Vanilla RNNs/LSTMs only go forward in time 𝑡 = 1, 2, … , 𝑇
• This makes it hard trajectories with long histories, i.e. when 𝑇 is large

• Proposed Modification: To have another trajectory that goes backward in time
• And the output 𝑃 𝑦'	 ℎCDEFGEH, ℎIGJKFGEH) depends on forward and backward hidden 

states

• Intuition from NLP: knowing a word
   means knowing what comes before
   and after the word 
• Experiments show this reduces
   the vanishing gradient problem

Other Variants: Bidirectional-RNNs

Huang, Zhiheng, Wei Xu, and Kai Yu. "Bidirectional LSTM-CRF models for sequence tagging." (2015).



• Conclusion: Once you know what the building blocks are, you can create different 
variants that are suitable for your task

• This is also not limited to RNNs. As we will see in next lecture, for example, we 
can combine RNNs with VAEs for more complicated tasks

Other Variants



• So far we have only learned a discriminative model for RNNs
• Simpliet RNN model

• And learning using some loss function on (𝑥!:", 𝑦!:") and gradient descent. 
• Is there a generative approach to RNNs?

• Learning a ”generative” RNN would allow us to:
• Sample new trajectories
• Explicitly model the trajectories with known distributions
• Compute the likelihood of trajectories

Next Lecture: Generative RNNs?

𝑧!"# = 𝑔 𝑧!, 𝑥!
	 𝑦! = 𝑓(𝑧!) 

ℎ'

𝑧'
𝑔&

𝑥'
𝑔'

𝑓


