Deep Generative Models:
Recurrent Neural Networks

Fall Semester 2024

René Vidal

Director of the Center for Innovation in Data Engineering and Science (IDEAS),

Rachleff University Professor, University of Pennsylvania
Amazon Scholar & Chief Scientist at NORCE

& Penn

Taxonomy of Generative Models

_ What we’ve learned:
What we’ve learned: Deep Generative Models PPCA
¢ MMs, HMMs, LDSs ‘ / « VAE
Autc:;i%reelzslve FI::‘S::ISS ed @ variable\ Energy-based
(e.g., PixelCNN)_/ (e.g., RealNVP) models models

Implicit models Prescribed models

What we study now: (e.g., GANSs) (e.g., VAEs)
* Recurrent Neural

Networks

Autoregressive Models

* Many kinds of models

* Markov Chains
Hidden Markov Models
 Markov Random Fields
* Linear Dynamical Systems
* Recurrent Neural Networks
* Transformers

* This lecture: we focus on Recurrent Neural Networks
* Vanilla RNNs
* Basic applications for Language Modeling

* Training and Issues with RNNs
* LSTMs and GRUs

Applications of RNNs

* NLP: Machine Translation, Text Classification, POS Tagging

* Healthcare: Gesture Forecasting, EGG

* Computer Vision: Self-driving, Image/Texture Classification

* Finance: Stock Price Forecasting

* Many, many more

X . . . Feature RNN-based Gesture
ECoG Signal Segmentation ; ; s
b extraction and selection decoder recognition

aflg

%E\(b(/
(7

=) == => ‘\l‘f[

Tim Q‘?\)

: - Y1

4

Healthcare: Gesture Forecasting

Encoder

<eos>

Is e

ls
; ; ; 1] ; l 4 ; ; 4 ; ; ;
They are waltching .J ' '
<bos> ardent .

Decoder
gardent

1
Ils reg

NLP: Machine Translation

3600
3400
[
u
=
- 3200
Y]
]
o
=
" 3000
w
0

0
Time (days)

Finance: Stock Forecasting

Recurrent Neural Network (RNNs)

e Recurrent Neural Networks is a neural network architecture for sequential data
* Often seen as a generalization of a feed-forward neural network (MLP)

e Let’s denote

* Xg, ..., X7 € RP as the inputs Yt
* Vo, ..., ¥7 € R™ as the outputs f,C |
* Zo, ..., Zr € R? as the hidden states R ; 9,4
I I)
* RNN can be described by - - Zt .
Zer1 = g(Aze + W) +wy W
ye = f(Cz) +v;
Xt

e Where

e A € R W e R¥D, ¢ € R™*? are weight matrices
* f and g are nonlinear functions (e.g. f can be a softmax function for soft classification)
* No noise w; , v when RNN used for prediction instead of generation.

RNNs vs LDSs

* Linear Dynamic Systems

W ~ N(O, Q)
vy ~ N(O,R)

Zt — AZt—l + th + Wt'
Ve = CZt + Dxt + V¢,

* Everything is linear
e Can be deterministic or stochastic

* Distributions of z; and y; has closed-
form due the Gaussian assumption

* Exact inference via Kalman filter
* Parameter learning via EM algorithm

e Recurrent Neural Networks

Ztr1 = 9g(Azy + Wxy) +wy, we ~ N(0,Q)
yve = f(Cz) +v¢, vy ~ N(O,R)

* Has nonlinearity from f and g
e Can be deterministic or stochastic

* Distributions of z; and y; does not
necessarily admit a closed form

* Approximate inference via extended
Kalman filter, particle filter, etc.

* Parameter learning via
Backpropagation Through Time

Extended Kalman Filters for RNNSs

* Let us consider an RNN with no inputs and

Zr1 = g(Azy) + wy

with noise added to the state and output. Ve = f(Cz) + vy

e Can we use EM and the Kalman filter for learning and inference with RNNs?

* On the one hand, we can write a probabilistic P(Zt+1 | z¢) = N (g(Az), Q)
model with Gaussian conditionals p(ye |l z¢) = N(f(Cz),R)

* On the other hand, even if z, is Gaussian, z; = g(A4z,) + w; may not!
* Reason: a linear transformation of a Gaussian is Gaussian, but the non-linearity breaks that.

* Why is this a problem?

e A Gaussian is uniquely determined by its mean —
and covariance (u,) Ke = Z4)t—1CT(CZ4)t—1CT + R)
 The Kalman filter tracks the evolution of the ZAt+1|t — AZAt|t—1 + AK(yo — CZAt|t—1)

mean and covariance of Z;11 | yg.¢. If thisisnot | & a a T
) : X = A 2441 — K:CXp 141)A
Gaussian, then we cannot track that anymore. t+1]t (t|t—1 G2t 1) + 0

Extended Kalman Filters for RNNSs

* How do we apply the Kalman filter to RNNs?
* We linearize f and g around current estimate

of mean and covariance using first-order
Taylor expansion and then we can run

a Kalman filtering step using the
Jacobian of f and g.

* Prediction

ZAt+1|t — AZAt|t
Seere = AL AT +Q

1

ZAt+1|t = g(AZAtlt)
Lepq)e = A2t + 0

* Therefore, we don’t have any
optimality guarantees.

Zr1 = g(Aze) + wy
= f(Cz) + v

Zt+1 = AiZ + wy
Ve = CeZy + v

A:t = Vzg(A2t|t)AT
Ce = V,f(C2e)CT

Update

K = 2t|t 1C

- 1
T(CZ4t-1CT +R)
Zeit = Zejt—1 T Ke (Vo — CZAt|t 1)

See = Sppp—1 — KeCEppe—q

1

A ~T (=~ a ~ T -1
Ki = Z¢je-1Ct (Ct2t|t—1Ct + R)
Zt|t = ZAt|t—1A+ K: (o _~fA(CZAt|t—1))
Zt|t — Zt|t—1 - KtCtZt|t—1

Unrolling and Parameter Tying

* Rather than treating it as a neural network with recurrent inputs and outputs,
one can unroll the network such that it becomes one feed-forward pass

* Here A, C,W are the same matrices for all timestep, known as Parameter Tying

Zr1 = g(Azy + W)

ye = f(Cz)
Y1 Y2 yr
|] |
Zg =0 R Zq A Zy ~ mmmmm—mm———--- > Zr
w w W‘

Apply matrix multiplication & function =—»

Backpropagation Through Time (BTT)

* The unrolled graph is a well-formed (DAG) computation graph, so we can run
backpropagation

* Parameters are tied across time, derivatives are aggregated across all time steps
* This is known as Backpropagation Through Time

* Question: Why do we want to tie the parameters?
* Reduce the number of parameters to be learned
* Deal with arbitrarily long sequences

* What if we always have short sequences?

* We may untie the parameters, but then we would simply have a Feedforward Neural
Network instead

Backpropagation in Time 21 = 9(Aze + W)

Ve = f(Cz¢)
e For a given sample (x,y), with x = {x,}{—; and y = {y: }{_1,

* For prediction at each time step J;, we can compute the loss [;(¥;, y;) for each
timestep and sum over all timesteps

Ly,y) = Z lt Ve Vi)

t=1
* For single prediction, we can compute loss at the final step L(¥, y1)

V1 Y2 yr
v v v
L1, y1) 1,32, ¥2) Ly (Jr,yr)

r r r

1 V2 Vr

CI CI C

A A

ZO - 0 —_— Zl E— Z2 __________ > ZT
w] w] w]
Xo X1 XT-1

Apply matrix multiplication & function =

Application of RNNs: Next Word Prediction

* Let’s consider applying RNN for language modeling task, When given some
preceding context, we want the language model to predict the next word:

P(y, = week| y;..—; = Homework 2 is due next)
| | |

[
Next word Con'text

~~ N :
* Suppose we have a set of N sentences {x(l)}i=1 , where x() = [xl,) xTi] is a
sentence of length T;

* If IV is the set of all possible words, then we can represent each word using a one-
hot vector with size |V| X 1

* Then using a word embedding matrix E, we can retrieve the word embedding
associated to the current word

* This provides a way for us to go from a word to its mathematical representation

Application of RNNs: Next Word Prediction

* We want each time step of the RNN to select the next word y;,; from our
vocabulary, which is a discrete choice. In this case, we can use the softmax
function for modeling the distribution P(y;|z;)

* Using BTT, we apply cross-entropy loss on the prediction of each timestep

Next word long and thanks for all
| l l | l
Loss I_ log ylongl |_]-Ogr Qandl I_ log Ythanks | |_].Og Yftor | | — log ya” | % Z L('];
A A Y =1
y
A)
e = Ex, Sotmaxover (ot) (o) (al) (o) (ol
_ th A A [Y
zt = g(Azi_q + Wey) h
y; = softmax(Cz;) RNN - - - .
\ 4 A h A A J

Input

Embeddings e

So long and thanks for

—00®
—0e®
—009®

Application of RNNs: Text Summarization

* Another application of RNNs is to summarize the whole sequence into a single
category.

* For example, given the title of a news article, predict the news category

* The entire model can be summarized by:

57 Category:
— Food
zr = g(Azog + W) softlnax
y = softmax(FC(zr)) "
Connected (FC)
Zg =0 — Z4q — Zy T mmm——--- - Zr
Title: “New Ice ‘ ‘
Cream truck X X1

showed up in o o
Walnut Building!” New Ice

Issues with RNN: Exploding/Vanishing Gradients

* While RNNs can capture long-term dependencies, training can be challenging

* Consider a simple RNN model with zy = g(Az_ 4 + Wxi_q)
output at the last iteration: y = Czy
. d .-
* What happens to gradient 67L as you go back in time? y oo Lo -y
| |
Zp=0 — Zq — Zy T mmmm———-- - Zr
X0 X1 XT-1
dL 0z; 0z, 0z dy OJL oL oL
9L _ 94 9% U739V — = ATATAT...CT—= = (cAT) T —
d0zg 0zy 0z1 0z, O0dzp 0y T 8Y% ay

Assuming g = identity

Apply matrix multiplication & function =

Exploding/Vanishing Gradients: LDS case

dL 0z, 0z, 0z dy OdL oL oL
1 2 3 . Y — ATATAT CT — (CAT)T _A
azo 820 021 022 OZT ay ay

* Let A;(A) be the maximum eigenvalue of A.
* For any initial condition zy and alarge T — o

* Exploding: If [21(4)| > 1, AT will grow to infinity
e Vanishing: If |1;(4)]| < 1, AT will diminish to zero

* Hence, the gradient involving AT terms will also either explode or vanish.

Issues with RNN: Vanishing Gradients

* We have to backpropagate through many gradient terms to get back to the first
time step

* This means long-range dependencies are difficult to learn (although in theory
they are learnable)

* Solutions:
e Better optimizers (second order methods, approximate second order methods)
* Normalization (at each layer to keep gradient norms stable)

* Clever initializations such that gradients don’t go to zero (e.g. start with random
orthonormal matrices)

* Alternative parameterization: LSTMs and GRUs

Long Short Term Memory (LSTM)

* So how does LSTM work? And how does it address the issue of vanishing

gradients?
* Intuition: Vanishing gradients happen because we multiply many gradients across

time, we want some ways to prevent that

* Long Short Term Memory (LSTM) can be described as a sequence of memory
cells, which we will go step by step
Ct = ft O ceoq +ic O f([x5 2e-1])
z = 0 © g(ct)
fe=o0 (fforget([xtizt—l]))
Ly = U(finput([xti Zt—1]))
Or = U(foutput([xtizt—ﬂ))

“forget gate”
“input gate”
“output gate”

Long Short Term Memory: Memory Cells

* Information learned by the LSTM are stored in “cells”, represented by c;
* New information comes from the f (x;)

C; = Cioq + f(xp) where f(v) = tanh(Wv + b)

he = g(ct)
. dc
 Note from the formulation, —— =1
dcr—q
Z1 Zp ZT
Co = 0O — C1) Cr, ~TTTTTTTTT ~ Ctr

Long Short Term Memory: Memory Cells

* Now if we concatenate what’s been learned in the hidden states h; with new
information from f(highlighted arrow in red)

Ct = Cr—1 + f([xe5 heoq])

he = g(ct)
: . : 0 : :
* Instead of gradient being identity, acct = | 4+ &, with € being small
t—1

Al] Z9 Zr

CO = O — Cl —p CZ —————————— - CT
t |
I

Long Short Term Memory: Forget and Input gate

* Now we need some way to control what to input and what to forget

Ce = [t ©Oceeq + 1 O f([xe; Ze-1])

z; = g(ct)
fe=o0 (fforget([xt; Zt—l])) “forget gate”
lp = U(finput([xti Zt—1])) “input gate”
Z1] Zy Zr
Co=0 — C1 1 sz """"" - CT
|

Long Short Term Memory: Output gate

* Finally, we need some way to decide what to store in our hidden state

Ct = [t ©Oci1 +1 O f([xs;24-1]) “updating the cell”
ze = 0 © g(cr)

fe=0 (fforget([xt; Zt—l])) “forget gate”
it = 0(finput([*¢; Ze-1])) “input gate”
O = O-(foutput([xt; Zt-1])) “output gate”
h'l T hZ hT
1 T 1
— C1 —_— CZ —————————— - CT

I T I

X0 X1 XT-1

Other Variants: Gated Recurrent Neural Networks

* Another famous variant of the vanilla RNNs is Gated Recurrent Neural Network
 Instead of a memory cell, it uses what’s known as a Gated Recurrent United (GRU)

* On a high level, rather than using forget, input and output gates like LSTM
* GRU uses a weighted sum of two hidden states

Zt = (1—5:) Oz +5: O f([xe 51 O 2e—4])

* Empirically, GRUs perform just \.<.| e
as well as LSTMs, but much more | }z
efficient because of it has _ IN (I) —
fewer gates E_,,/ L OUT - OUT
(a) Long Short-Term Memory (b) Gated Recurrent Unit

Chung et al. (2014) Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling: https://arxiv.org/pdf/1412.3555v1.pdf

Other Variants: Bidirectional-RNNs
 Vanilla RNNs/LSTMs only go forward intimet = 1,2, ..., T

* This makes it hard trajectories with long histories, i.e. when T is large

* Proposed Modification: To have another trajectory that goes backward in time

* And the output P(y¢ | htorward, Pbackward) depends on forward and backward hidden
states

* Intuition from NLP: knowing a word Ouput Ay, Ay, Ayes
Layer

means knowing what comes before % % %

and after the word Bidirectional € LSTM ®&—-<€¢- LSTM € --<- LSTM <
* Experiments show this reduces Layer el G arrnl U grmatl
™
the vanishing gradient problem T T T
Input Xep x Xpp —
Layer \ "~) c-eeeee N) eeeeees

Huang, Zhiheng, Wei Xu, and Kai Yu. "Bidirectional LSTM-CRF models for sequence tagging." (2015).

Other Variants

* Conclusion: Once you know what the building blocks are, you can create different
variants that are suitable for your task

* This is also not limited to RNNs. As we will see in next lecture, for example, we
can combine RNNs with VAEs for more complicated tasks

Next Lecture: Generative RNNs?

* So far we have only learned a discriminative model for RNNs
* Simpliet RNN model

Zey1 = 9(2Z¢, x¢)

ve = f(2¢)

* And learning using some loss function on (xq.7, ¥o.7) and gradient descent.
* |s there a generative approach to RNNs?

Xt

* Learning a "generative” RNN would allow us to: gx
 Sample new trajectories .
t

* Explicitly model the trajectories with known distributions
* Compute the likelihood of trajectories f ‘gz

